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Abstract

The question of how referential choice and interpretation are in-

fluenced by production cost remains unresolved in the literature. A

recent paper (Rohde et al., 2012) investigates the conditions under

which speakers choose to coordinate using low-cost but ambiguous ex-

pressions by conducting a number of experiments in which participants

played an iterated referential coordination language game. This dis-

sertation takes a novel approach to modeling referential coordination

by simulating Rohde et al.’s results using particle swarm optimization

(PSO), a general-purpose optimization method for non-differentiable

problems with continuous search spaces. Two PSO-based models are

presented, one of which is shown to perform well against a baseline

model. Predictions from the more favourable of the two models are

presented for several variants of the Rohde et al. language games, ex-

trapolating from the results of the original studies. This model is also

shown to partially replicate observed findings of persistent entrain-

ment on lexical forms, even when a changing discourse context causes

these forms to become overinformative (Brennan & Clark, 1996). The

results from the PSO model are taken to demonstrate that dyadic

referential coordination can be framed as a constrained optimization

problem in which agents do not need to maintain an explicit represen-

tation of the common ground or of each other - a finding in keeping

with egocentric accounts of communication from the literature (Hor-

ton & Keysar, 1996).
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1 INTRODUCTION

1 Introduction

An open question in the field of linguistics is how participants in a conversa-

tion coordinate their use of referring expressions. When producing referring

expressions, interlocutors must weigh the costs they incur when producing

the expression, in terms of both construction and articulation, against the

ease with which their conversational partners will be able to infer the in-

tended referent. When speakers employ referring expressions that do not

uniquely select a referent within the context of the discourse, they further

risk their conversational partner failing to infer the correct referent. For

example, consider a discourse context in which there are three plausible ref-

erents, a chocolate Labrador, a black Poodle, and a brown American Water

Spaniel/German Longhaired Pointer mix. Given the high cost of producing

an unambiguous referring expression for the latter, a speaker might attempt

to refer to the American Water Spaniel/German Longhaired Pointer mix as

“that brown dog”. However, this expression could also plausibly be used

to indicate the chocolate Labrador, and should the speaker’s communicative

partner interpret the referring expression as such, rectifying this misinter-

pretation is likely to be costly. While communicating, interlocutors there-

fore jointly seek to minimize their expended effort while not violating the

constraint imposed by their partner’s ability to disambiguate the referring

expressions used (Benz et al., 2005). Consequently, the referential strategy

a speaker adopts must be sensitive to the relative costs of producing each

referring expression as well as to the evolving state of mappings between ref-

erential form and intended referent, as coordinated with their interlocutors.
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1 INTRODUCTION

Recent work has employed the use of language games to investigate how

speakers make selections from a given set of available ambiguous and un-

ambiguous referring expressions (Rohde et al., 2012; Degen & Franke, 2012;

Frank & Goodman, 2012). Unlike some studies which have targeted one-

time production choices (e.g. Degen & Franke, 2012), Rohde et al.’s stud-

ies notably involve both human speakers and comprehenders, and test the

coordination of referring expressions in a “conversational” (multiple turn)

scenario. To do so, Rohde et al. introduced an iterated language game in

which participant dyads were rewarded for coordinating their use of ambigu-

ous and unambiguous referring expressions. In these studies, participants’

ability to successfully coordinate on the use of less costly ambiguous forms

was shown to be affected by the relative costs of the available competing

unambiguous forms. This paper seeks to introduce a computational model

of Rohde et al.’s findings, and, in doing so, consider how modeling may be

applied to the problem of referential coordination. Such a model would allow

simulation of the experimentally infeasible or impossible, as well as enabling

extrapolation from the data collected in the lab, the results of which can

be used to drive further studies in potentially fruitful directions. Further,

computational models in general uniquely allow for direct inspection of their

parameters and processes, which can shed light on aspects of human cogni-

tion. Therefore, computational modeling has seen extensive use in the field

of linguistics, with notable examples including the use of iterated learning to

demonstrate the spontaneous construction of optimal lexicons (Smith, 2002)

and spontaneous emergence of syntax (Kirby & Hurford, 2002), the use of

incremental probabilistic parsing to model garden-path sentence comprehen-
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1 INTRODUCTION

sion (Hale, 2001), and the use of Bayesian statistics to model referential

inference (Frank & Goodman, 2012).

When selecting a modeling approach for Rohde et al. (2012), three cru-

cial considerations must be taken into account: first, the chosen approach

needs to represent the internal state of a participant with respect to the

game, and to allow the participant’s actions to be derived from this state;

second, changes in a participant’s internal state within the model need to

be reflective of the participant’s communicative success with their partner,

even as their partner’s internal state itself changes; and third, the modeling

approach should be easily extensible to many variants of the Rohde et al.

language games. Particle swarm optimization is suitable in all three regards.

Originally introduced by Kennedy & Eberhart (1995), particle swarm opti-

mization (PSO) can serve not only as a general optimization method, but

also as a means of modeling human social behaviour, especially in the con-

text of collaborative problem solving (Kennedy, 1997). These factors make

the technique an ideal candidate for modeling referential communication.

A particle-swarm-based model would allow a more exhaustive exploration

of the effects of various form costs on referential coordination, offering a

comprehensive picture of the circumstances under which ambiguous form

entrainment is possible and likely. Further to this, an accurate particle-

swarm-based model of human coordination in a discourse setting might shed

light on more fundamental aspects of human cognition and social interaction

as represented by the model’s parameters. A successful model could also

suggest PSO’s suitability for the modeling of other linguistic phenomena.

Conversely, if PSO is not a viable means of modeling the results observed
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in Rohde et al., this could suggest a fundamental difference between human

linguistic behaviours and other social behaviours successfully modeled via

PSO. A negative finding might also suggest that specialized methods are

required to model more complex human social interactions.

To address these possibilities, this paper models Rohde et al.’s experi-

ments as a PSO task, utilizing a mixed strategy search space to represent

form production and comprehension. Two model variants optimized to the

Rohde et al. language games are presented, which differ in their treatment

of the search space; one of these models is shown to compare favorably to

a baseline PSO model. Both models respond to changes in form costs in

a promisingly similar fashion to the observed experimental data, although

neither perfectly replicates human trials.

2 Background

2.1 Referential coordination

2.1.1 Overview

Language is an inherently cooperative endeavour. To successfully understand

and be understood by their interlocutors, speakers must actively coordinate

their use of referring expressions, and rely on their communicative partners

to do the same. The mechanisms by which this coordination can occur with

relative facility are an active topic of research, and of special interest is

the extent to which speakers maintain internal models of their interlocutors

in order to inform their communicative strategies. Research has also been

7
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devoted to the processes by which speakers balance the costs they incur

when communicating against those incurred by their interlocutors, and how

the interplay of these combined factors directs the evolution of referential

mappings during discourse. While certain communication games have been

analyzed within a game-theoretic framework (e.g. Rohde et al., 2012; Degen

& Franke, 2012), the psycholinguistics literature has largely approached the

topic of referential coordination from the perspective of audience design; this

section provides an overview of previous work done in both communities.

2.1.2 Game theoretic approaches

Game theory provides a methodology for understanding agents’ actions by

modeling them as strategies within games. When deciding on which actions

to choose, agents are said to attempt to maximize their expected utility

by leveraging their knowledge of the game’s state (Benz et al., 2005). Game

theoretic concepts can be used to describe a number of linguistic phenomena;

for instance, Jäger (2008) demonstrates how an evolutionary game-theoretic

framework (in which systematic stability is maximized) can be successfully

applied to the division of the vowel space in order to predict the vowel systems

of modern-day languages.

Lewis (1969) established much of the foundation necessary to frame lan-

guage in game-theoretic terms by providing an account of the establishment

of conventions as a coordinative (this is to say, positive-sum) game in which

agents’ interests are aligned. His work has been built upon in order to apply

game theory to the more specific problem of referential coordination. For

example, by convention, the use of more general but costly referring expres-
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sions implicitly excludes the referents of easily accessed and more specific

forms (e.g. “cutter” versus “knife”, or “some” versus “all”). The estab-

lishment of this convention has been explained using an evolutionary (but

ontogenetic) game-theoretic approach: both speaker and hearer benefit from

an interpretation of the former which carries a greater degree of informa-

tion (e.g. “cutters which are not knives”, “some but not all”) (Benz et al.,

2005). More recent work by Degen & Franke (2012) has used game theoretic

models to predict participant behaviour in referential inference tasks with

some success, although the researchers expressed the need for more nuanced,

comprehensive models (an example of which this paper attempts to provide).

2.1.3 Psycholinguistic approaches

The problem of referential coordination within the psycholinguistics litera-

ture has primarily been framed in terms of audience design. According to

one school of thought, as presented in Clark & Murphy (1982), speakers

carefully tailor utterances to best target their specific interlocutor or inter-

locutors; likewise, listeners interpret the meaning of utterances with respect

not only to the speaker but, it is claimed, with respect to the speaker’s pre-

sumed beliefs about the listener as well. Under this model, audience design

on the speaker’s part enables the listener to disambiguate the referent of

an otherwise ambiguous referring expression, provided the listener’s internal

model of the speaker suffices to allow the listener to understand why the

speaker has chosen that particular referring expression.

As an example (adapted from Clark & Murphy), suppose Alice and Bob

are conversing; Alice mentions to Bob something about “your friend”. Given
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the reasonable assumption that Bob has more than one friend, the referent

of this expression is ambiguous. However, if Alice has met only one of Bob’s

friends, she may rely on him to recognize this fact and interpret the expres-

sion accordingly. From Bob’s perspective, to disambiguate Alice’s referring

expression, he must both recall that Alice has met only one of his friends

and correctly reason that she will expect him to recall this (and to leverage

this information to infer a referent). As interlocutors, over the course of

a discourse or number of discourses, update and maintain their models of

each other and the common information shared between them, they become

increasingly entrained on specific lexical forms which are reflective of this

shared knowledge and experience.

This understanding of referential coordination is borne out in work on

natural language generation. For example, Golland et al. (2010) utilize a

game-theoretic approach to realize a language game in which an artificial

speaker agent must successfully communicate a specified referent to their

human listener partner. Their results show that when this artificial speaker

is endowed with an internally embedded model of the listener, it is able to

substantially outperform simpler models which do not take the listener into

account.

While this research makes the implicit assumption that the common

ground between speaker and hearer informs production immediately when

an utterance is initially being planned, more egocentric models of commu-

nication offer a competing view. In a human behavioural study (Horton &

Keysar, 1996) in which participants were required to quickly produce refer-

ring expressions for their communicative partners, it was found that time
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pressure caused the participants to disrespect the common ground more fre-

quently than when speed of production was not encouraged. This was taken

to support the conclusion that the common ground does not inform ini-

tial utterance planning, but instead is taken into consideration as a filtering

mechanism during later-stage utterance production. Furthermore, Horton &

Keysar (1996) posited that the common ground may play no role whatsoever

in the production of the majority of utterances, citing the potential costliness

of routinely taking this information into consideration.

2.1.4 Rohde et al. 2012

In “Communicating with Cost-based Implicature: a Game-Theoretic Ap-

proach to Ambiguity” (2012), Rohde et al. present an iterated language game

in which participants aim to indicate an object to their partner via use of one

of several possible referring terms. Participants gain points upon successful

communication, but must spend points in order to communicate. Each refer-

ent has a corresponding unambiguous form that players may choose to send

to their partners; alternatively, players may send an ambiguous form with a

different cost that could potentially indicate a number of referents. Players

who attain a certain score are allowed to exit the experiment upon doing so,

and are in this way incentivized to use the least costly possible expressions

to achieve the highest rate of communicative success. Two studies were con-

ducted; in both, two groups of three unambiguous referring expressions were

paired with a single less costly ambiguous referring expression which could

plausibly be used for any item within the group (see Table 1).

The studies conducted by Rohde et al. demonstrate that the likelihood
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Cost
Name Study 1 Study 2
“Rose” 60 80
“Daisy” 120 140
“Tulip” 280 165

“Flower” 80 80
“Apple Tree” 60 80
“Pine Tree” 120 135
“Palm Tree” 250 170

“Tree” 80 80

Table 1: Referring expression costs used in the Rohde et al. studies, with
ambiguous referring expressions highlighted in grey.

of a pair of participants successfully coordinating their use of an ambiguous

term is partially contingent on the relative costs of the unambiguous and

ambiguous referring expressions. Specifically, pairs of participants were more

likely to coordinate on using the ambiguous form in the second study, in which

unambiguous form costs were both lower and more similar to each other.

This was notably not in keeping with game-theoretic predictions; Rohde et

al. suggested that the lower stakes (i.e. more moderate penalties) in the

second study resulted in a greater willingness on the part of the participants

to explore a wider range of referential strategies. The question that this

dissertation asks is whether this behaviour can be better understood as an

emergent property of a simulation, such as a PSO-based model.
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2.2 Particle swarm optimization

2.2.1 Overview

Particle swarm optimization was first formulated by Kennedy & Eberhart

(1995) in an attempt to model human social behaviour. The initial model

was based on Heppner & Grenander (1990)’s work in modeling bird flocking

and roosting behaviour in two-dimensional space, refined to allow for an arbi-

trary number of dimensions and for particles to share the same or arbitrarily

close positions within said multidimensional space. Kennedy & Eberhart

demonstrated that their new optimization method was suitable not only for

use in modeling human social behaviour, but also for the general-purpose

optimization of non-linear continuous problems. Specifically, PSO was found

to be successful both in optimizing the weights of an artificial neural network

and in the Schaffer f6 problem, a standard benchmark for general-purpose

optimization methods (Davis, 1991).

The concept behind the PSO algorithm is relatively simple. Potential

solutions to some problem with n dimensions are represented as particles

existing within an n-dimensional search space. Each particle has both a

position within this space and some velocity vector. Each particle also keeps

track of the best position it has been in as evaluated by the given objective

function, which is known as its “personal” best position; a “global” best

position representing the best position found by any particle within a swarm

or swarm subgroup is also maintained (Chong & Zak, 2013). A PSO task

is run iteratively, until some stopping criterion is reached (Solnon, 2010).

Every iteration begins by updating the velocities of all particles. In doing
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so, a particle is acted upon by two forces: the attraction of the particle

to its personal previous best known position, as governed by a “cognitive”

parameter, and its attraction to the best known position within its group,

as governed by a “social” parameter (Chong & Zak, 2013). The particle

also maintains some momentum from its previous velocity. Following this,

particle positions are updated in accordance with their velocities, with new

positions being evaluated via the given objective function and best-known

personal and global positions updated where appropriate. Initial particle

velocities are assigned randomly; in doing so, exploration of the search space

is encouraged, reducing the likelihood of the swarm as a whole becoming

caught in a local extremum or local extrema of the objective function (Yang,

2014; Solnon, 2010).

As noted by Yang (2014), PSO is applicable to a large domain of problems,

has straightforward conceptual groundings, and is simple to implement; these

factors have spurred on its widespread use in a number of fields, and resulted

in the development of numerous refinements and derivatives of the original

algorithm. This paper uses the well-known inertial variant of PSO, which

offers a “noticeable improvement” in speedy convergence on good solutions

as compared to standard PSO (Yang, 2014). Further to this variant, for the

purposes of this paper, each particle’s position is updated with respect to the

best-found solution within a predefined neighborhood or group of particles,

as opposed to the global best-found solution, as presented in Solnon (2010).

When these particle groups do not intersect, this is simply equivalent to

running a number of independent PSO tasks equal to the number of groups.

14
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2.2.2 Previous work

While PSO has been applied to a number of problems within the fields of

linguistics and psychology, its primary use has been as a means of optimiz-

ing parameters for other models, as opposed to direct application as a model

in and of itself (e.g. Chatterjee et al., 2005; Mehdad & Magnini, 2009).

Notable exceptions to this trend include the use of PSO to perform unsuper-

vised phoneme clustering (Ahmadi et al., 2007) and the modeling of human

emergency evacuation behaviours via PSO (Cheng et al., 2008).

PSO has likewise been applied to game learning, often using a coevo-

lutionary paradigm in which agents play against one another in order to

evaluate their fitness. However, traditionally this method has involved PSO

over a search space of neural network weights, where the neural networks are

used to choose actions given a game state, or in cases where the “game” is a

classical constraint optimization problem, such as the n-queens problem (En-

gelbrecht, 2005). By contrast, in the new approach presented in this paper,

the positions of particles themselves comprise agents’ internal states, which

directly define a mixed strategy (see subsubsection 3.2.1).

2.2.3 Formulation and parameters

In the formulation of PSO employed in this paper, a particle i with position

xi has a velocity vi at time t such that

vti = θ(t) · vt−1i + α · ε1 · (x∗i − xt−1i ) + β · ε2 · (x∗N(i) − xt−1i ) (1)

15
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where θ is the inertial scheduling function, α is the cognitive component, β

is the social component, x∗i is i’s personal best known position, x∗N(i) is the

global best position known for i’s neighborhood or group N(i), and ε1 and

ε2 are randomly chosen values within (0.0, 1.0]. Although θ can take many

forms including, most commonly, a constant function (Yang, 2014), for the

purposes of this paper θ is defined with respect to a base inertia τ and inertial

dampening factor σ such that

θ(t) =
τ

σt
(2)

Finally, the position x of i at time t is defined as

xti = xt−1i + φ · vti (3)

where φ is a constant velocity dampening factor.

3 Methods

3.1 Overview

To model referential coordination within the Rohde et al. language game

as a PSO task, individual participants were modeled as particles in groups

of size 2. In exploring the search space of possible game strategies, each

particle sought to maximize its score within the language game in relation

to the strategy of its partner. The scoring function of the language game

itself was parameterized on the relative costs of unambiguous forms, as in
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Rohde et al.. Further to this, the parameters of the PSO algorithm (cognitive

component, social component, etc.) were optimized to best replicate Rohde

et al.’s experimental findings. Two models were ultimately produced,1 which

differed in their handling of the search space; both were evaluated against

the experimental data.

3.2 Models

3.2.1 Search space

In modeling the Rohde et al. language game as a PSO task, the form a

solution to the game takes must be considered in order to establish a search

space. To do so, the game-theoretic notion of a mixed strategy was adopted,

in which each possible action a within a game is performed by a participant i

with some probability Pi(a) (Benz et al., 2005). For the given language game,

for each referent r the participant can be said to maintain a probability of

using the associated ambiguous form A, Pi(A|r). Conversely, the probability

of a participant using the available unambiguous form for r can be given as

1 − Pi(A|r). Therefore, in an instance of the Rohde et al. language game

with n possible referents, a participant’s strategy was represented with n

independent probabilities, yielding an n-dimensional search space.

It is important to note that this does not constitute a traditional mixed

strategy, in that a participant’s strategy is not a probability distribution.

This is to say, the sum of a participant’s probability of using the ambiguous

1The full source code for this project is available online at http://git.io/pb5S. Im-
plementations of the PSO algorithm and the Rohde et al. language games were written
specifically for use in this dissertation.
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referring expression over all referents may not equal 1. As an example, given

two referents r1 and r2, a participant is capable of opting to use the ambiguous

form for neither. In this sense, it may be more accurate to state that a

participant i maintains a separate mixed strategy for each referent r, where,

for the ambiguous form A and unambiguous form U , Pi(A|r) + Pi(U |r) = 1.

It is also important to note that for the purposes of this paper, partici-

pants were assumed to optimize their strategies for groups of referents sharing

the same ambiguous form independently of other groups.2 As such, the two

studies presented in Rohde et al. were each treated as two independent lan-

guage games being run concurrently, and the PSO approach presented used

3-dimensional search spaces as opposed to 6-dimensional search spaces. This

assumption was justified by the observation that participant pairs in Rohde

et al.’s second study were able to coordinate their use of the ambiguous form

for one group, but not the other.

Finally, because each dimension in the search space defined above reflects

a probability, values outside the interval [0, 1] are invalid. A number of ap-

proaches for adapting PSO to constrained optimization problems have been

suggested in the literature;3 two plausible alternatives as presented in En-

gelbrecht (2005) were considered, resulting in two competing models. In the

first model, particles which moved outside the desired search space immedi-

ately had a repair method applied to them, whereby they were relocated to

the nearest point which did not violate the given constraints. This model

will be referred to as the “repair” model. In the second model, particles were

2In Rohde et al. specifically, the flower category and tree category (see Table 1).
3See Helwig (2010) for a recent overview.
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allowed to move freely within the search space, including to regions that vio-

lated constraints. However, particles not meeting the given constraints were

not allowed to update either their personal best known position or the global

best position. Because all personal best positions and the global best posi-

tion therefore remained in feasible space, particles were naturally attracted

back to the region of the search space which respected the constraints. The

model utilizing this technique will be referred to as the “rejection” model.

In both models, initial particle positions were assigned randomly within the

valid search space.

3.2.2 Objective function

In applying PSO to the Rohde et al. language game, an appropriate repre-

sentation of the game’s goals must be formulated as an objective function.

In the game as presented, the expected number of points awarded to partic-

ipant i given their partner j when asked to communicate referent r can be

calculated as follows:4

EPi(r|j) = Pi(A|r)(S · Pj(r|A)− costA) + (1− Pi(A|r))(S − costr) (4)

where costA is the cost of production of the ambiguous form, S is the number

of points awarded on successful communication (set at 80 and 85 in Rohde

et al., respectively), and costr is the cost of production of the unambiguous

form for r.

4N.B. that while the notation P (x|y) is normally used solely to indicate the conditional
probability of x given y, this notation is here additionally used to indicate that the expected
number of points EPi must be evaluated with regards to i’s partner j, notated as EPi(r|j).
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Figure 1: f(i) with respect to partner j (marked as “X”) in a two-referent
language game, with costA = 80, costr1 = 60, costr2 = 120, and S = 85.
Note that in the scenario presented on the left, with xj = (0.1, 0.9), f ’s
global optimum is located in the left region of the search space, whereas in
the scenario presented on the right, where xj = (0.9, 0.1), the global optimum
is located at the bottom-right.

In each round, the actual number of points awarded to participants is

dependent on samples from Pi and Pj, as well as the randomly-chosen r. As

such, without the strategies of i or j changing, there are for any given round

a number of possible scores i might attain. Relying on the game unmodified

as the objective function for a PSO task would therefore be imprudent, as an

inconsistent objective function would be much harder to optimize. Instead,

the objective function f used for both models was chosen as

f(i) =
∑
r∈R

EPi(r|j) + EPj(r|i) (5)

Figure 1 illustrates a complication stemming from this formulation of f .
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Because the value of f is dependent not only on the speaker’s strategy, but

also on the strategy their partner uses, because these strategies are a direct

result of the positions of particles within the particle swarm, and because

the positions of particles may change on every iteration of the PSO task, f is

extremely dynamic. Figure 1 reflects this dynamism in demonstrating that

changes in the strategy of an agent’s communicative partner (favoring the use

of the ambiguous form nearly exclusively for either of two referents) can rad-

ically alter the landscape of the objective function. PSO is well-known for its

resilience to dynamic functions, when accommodations are made by chang-

ing the methods by which particle velocities and best positions are updated

(Engelbrecht, 2005). However, established accommodation techniques (En-

gelbrecht, 2005) are unsuitable for use here because they universally assume

an objective function which updates periodically, not constantly.5 Further,

many of the techniques proposed make assumptions that would be implau-

sible within the context of the Rohde et al. language game. For example,

one technique is to reinitialize all or part of the particle swarm when the

objective function changes, however, this would not only result in partici-

pants randomly changing strategies every iteration, but would be difficult

to justify from a real-world perspective. In another technique, the associ-

ated scores for personal best and global best positions are recalculated when

the objective function changes. Alternatively, in a variation of this method,

personal best positions are entirely reinitialized and only the fitness of the

global best position is recalculated. However, in the context of the language

5It should be noted here that while Engelbrecht’s treatment of these methods is exten-
sive, it is not (and does not seek to be) exhaustive; see Blackwell (2007) for a more recent
and in-depth discussion of this topic.
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game, these would be equivalent to allowing participants to continuously re-

evaluate previously held strategies against their partner’s current strategy.

Because no appropriate adaptations for dynamic fitness functions were found,

the implementation of PSO used was not altered to accommodate f .

3.3 Model parameter optimization

To complete the models described above, the model parameters were opti-

mized to best fit the experimental data. These parameters included the stan-

dard PSO parameters, namely: the cognitive and social components, which

were restricted to the interval [0, 4]; an inertial dampening factor, which was

restricted to the interval [1, 1.1]; and an initial inertia, which was restricted

to [0, 4]. Additionally, a velocity dampening constant, which was used in the

calculation of particle positions and was restricted to [0, 2], and the number

of iterations over which the model was to be run, as restricted to [100, 1000],

were also optimized.

Optimization of these parameters was itself performed via PSO over

a 6-dimensional search space. The parameter values used for this meta-

optimization task were those recommended in Shi & Eberhart (1998) and

Solnon (2010). Parameters were optimized over 1255 iterations of the parti-

cle swarm algorithm for the “repair” model; these parameters were then also

applied to the “rejection” model. The optimization task itself utilized the

unbounded “rejection” technique as recommended in Engelbrecht (2005).

Initial particle positions were assigned using the randomized nonuniform

method presented in Mitchell (1991).
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The parameter optimization task sought to minimize the discrepancy in

rates of ambiguous form coordination, unambiguous form coordination, and

failure to coordinate between the model and the experimental data, across

all language game variants. In order to evaluate this and compare model

behaviour with the behaviour of human participants in the task, pairs were

considered to have coordinated if, when the PSO task had completed, ref-

erents could be successfully communicated between the pair ≥ 95% of the

time.

4 Results

4.1 Meta-optimization task (PSO parameters)

The results of the model parameter optimization task are presented in Table

2. Of particular note are the substantial discrepancies between the baseline

and optimized values for the cognitive component, social component, and

initial inertia.

Parameter Optimized Baseline %∆
Cognitive component (α) 0.689 2.0 −65.55%
Social component (β) 2.897 2.0 +44.86%
Inertial dampening factor (σ) 1.027 1.001 +2.58%
Initial inertia (τ) 0.658 1.2 −45.17%
Velocity dampening factor (φ) 1.202 1.0 +20.20%
Iterations 305 N/A N/A

Table 2: Comparison of optimized PSO parameters against those recom-
mended in Shi & Eberhart (1998) and Solnon (2010).
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Experiment costr1 costr2 costr3 costA
Experiment 1 60 120 280 80
Experiment 2 60 120 250 80
Experiment 3 80 140 165 80
Experiment 4 80 135 170 80

Table 3: Referring expression costs used in the Rohde et al. studies.

Model Scaling factor
Rejection 21.16
Repair 2.19
Baseline 11.33

Table 4: Scaling factors used for each model.

4.2 Comparison of models to experimental data

Results for both the rejection and repair models were compared against a

baseline model, which made use of the standard parameters used in the

meta-optimization task. For each model, 250 simulations of 10 pairs were

performed for each of the sets of costs used in Rohde et al. (see Table 3).

To assess how similarly each model responded to changing costs as com-

pared to human participants, scaling factors for each model were derived by

minimizing the squared error in ambiguous form coordination rates. The

scaling factors are presented in Table 4. A comparison of the scaled results

from each model to the experimental data is given in Figure 2. To then com-

pare the error rates for scaled ambiguous form coordination across the three

models (see Figure 3), an ANOVA was conducted predicting error rate as a

function of model type, with no random effects (i.e., error for each simulation

treated as an independent observation). The repair model was shown to have

a significantly lower error than the baseline (F (1, 1998) = 921.3, p < 0.001)
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Figure 2: Comparison of pairs coordinating using the ambiguous form for all
models against the experimental data. Rates scaled as per Table 4; experi-
mental conditions described in Table 3.

and than the rejection model (F (1, 1998) = 924.3, p < 0.001). This suggests

that, while all three models demonstrated sensitivity to variations in form

costs, and while no model perfectly replicated the raw rates of ambiguous co-

ordination observed experimentally, the model using the repair method (once

scaled) was best suited for capturing the proportional responses attested in

the Rohde et al. studies.

4.3 Predictions from repair model

4.3.1 Cost and reward variation

As the repair model was shown to outperform both the rejection and baseline

models in mimicking experimental data when scaled (p < 0.001, see 4.2),

it was chosen to predict referential coordination behaviours outside those

conditions studied in Rohde et al.. The results of varying ambiguous form
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Figure 3: Comparison of error in scaled coordination rate across the repair,
rejection and baseline models (outliers left unplotted).

cost on ambiguous and unambiguous form coordination ceteris paribus are

presented in Figure 4,6 while Figure 5 demonstrates the effects of adjusting

the number of points awarded for successful communication. As can be seen,

the repair model predicts that overall coordination rates (on both ambiguous

and unambiguous forms) increase in response to both higher ambiguous form

cost and higher successful communication reward.

4.3.2 Variation of discourse context after entrainment

It is a well established phenomenon that interlocutors who entrain on the

use of a high-cost but unambiguous referring expression in a discourse en-

vironment containing similar referents will only infrequently switch to using

6It should be noted that because coordination rates have been scaled here as per Table
4, the combined rates in some instances exceed 100%. The rates could be normalized or
the scaling factor adjusted to avoid this; alternatively, an different choice of parameters
for the model might obviate the need for a scaling factor and, in doing so, eliminate the
issue.
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Figure 4: Average entrainment rates in Experiment 1 with ambiguous form
cost varied, as predicted by the repair model.
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Figure 5: Average entrainment rates in Experiment 1 with successful com-
munication reward varied, as predicted by the repair model.
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Experiment costr1 costr2 costr3 costA
Experiment A 80 140 165 80
Experiment B 280 80

Table 5: Form costs for experiments A and B, which differ in their dimen-
sionality. Note that experiment A’s costs are identical to those of Table 3,
experiment 3, for which Rohde et al. recorded the highest rate of ambiguous
form coordination.

a less costly but more general referring expression when a new discourse

context would allow them to do so unambiguously (Brennan & Clark, 1996):

an apparent violation of the Gricean maxim of quantity (Grice, 1975). To

investigate whether this property holds for artificial agents within the repair

model, two experiments were conducted which varied in their dimensionality

and form costs (see Table 5). For both experiments, to simulate previous

entrainment on the unambiguous form, a swarm of particles I was initialized

such that ∀i ∈ I,∀r ∈ R,Pi(A|r) = 0; further, the initial inertia parameter

was modified from the optimized value presented in Table 2 so as to reflect

305 iterations of the PSO algorithm having already been run.7 With these

initial conditions set, the PSO algorithm was then run on the swarm for an

“additional” 305 iterations.

For both experiment A and B, 250 simulations were run. In no sim-

ulation under either condition did the number of agent pairs entrained on

unambiguous forms initially differ from the final number after the simula-

tion had concluded; this is to say, all agents continued using the more costly

unambiguous forms.

7As calculated using equation 2 (presented in 2.2.3), with optimized inertial dampening
factor having been left unchanged from Table 2.
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5 Discussion and further work

5.1 Overview of results

In optimizing a repair-technique-based PSO model to replicate the findings of

Rohde et al., a meta-optimization PSO task converged on a set of parameters

which differed substantially from accepted baseline values (Shi & Eberhart,

1998; Solnon, 2010). These optimized values were then used to parameterize

repair-technique and rejection-technique PSO models, which were compared

against both a rejection-technique PSO model using baseline parameters and

the experimental data. When ambiguous form coordination rates were scaled

to minimize overall modeling error, the repair-technique model was shown

to perform best in emulating human responses to shifting form costs. When

used to extrapolate from the Rohde et al. studies, the repair model predicted

increased dyad referential coordination rates in response to both rising am-

biguous form costs and rising communicative rewards. Particle dyads, once

sufficiently entrained on a particular unambiguous form, were also shown not

to respond to changes in the discourse environment which licensed the use

of previously unavailable, less costly ambiguous forms - a finding in keeping

with results from the literature (Brennan & Clark, 1996).

5.2 Meta-optimization task

The optimization of PSO parameters to the target language game (4.1) re-

sulted in a set of parameters which differed quite noticeably from those known

to provide good solutions for general problems (e.g. the f6 function). The
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most salient changes were to the cognitive and social components. Whereas

best practice normally dictates that these parameters be set roughly equal to

each other, in the optimized parameters, cognitive component was reduced by

approximately 66%, and social component was increased by approximately

45%.

There are a number of possible explanations for these discrepancies. Re-

call from equation 1 (2.2.3) that the cognitive component determines how

attracted a particle is to its own previously best-found position, and that the

social component determines how attracted a particle is to the best-found

solution within its group (in this instance, within its dyad). Recall also from

3.2.2 that one possible technique for handling dynamic objective functions is,

on objective function change, to reinitialize or discard personal best positions

and to recalculate the fitness of the global best-found position. While the

latter is only achievable through a modification of the core PSO algorithm, in

a scenario wherein the objective function changes every iteration, the former

is tantamount to lowering the cognitive component to zero. As the language

game modeled here is evaluated for each particle against its partner’s po-

sition, which is updated on every iteration, the game’s objective function

matches this description; the significant lowering of the cognitive compo-

nent in optimized parameters for the game can therefore be interpreted as

an implementation of the previously described dynamic function adaptation

technique.

Another possible explanation of the divergence of these parameters from

their standard values is that this is reflective of the nature of the chosen ob-

jective function. Language is an inherently cooperative endeavour; it would
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therefore come as no great surprise if referential coordination games encour-

aged favouring the best strategies across all communicative partners over

those that maximize individual fitness. Indeed, the parameter optimization

results may be reflective of general human eusociality. It is important, how-

ever, to note that any conclusions of this nature drawn from the parameter

optimization task must be taken with a grain of salt; the underabundance of

data from Rohde et al. and resultant infeasibility of dividing the data into

test and training sets almost certainly assures that the models have been

grossly overfit. Confirmation of these results would require not only more

extensive human trials under a number of conditions, but also a thorough ex-

amination of how adjusting each of the PSO parameters in isolation impacts

the model’s results.

5.3 Comparison of models

Despite the optimization of PSO parameters, none of the evaluated models

were able to closely replicate the raw ambiguous and unambiguous form

coordination rates observed in Rohde et al.. However, all three models tested

exhibited proportional changes in response to varied form costs similarly to

those exhibited in the human studies. Of the three models, the repair model

was shown to clearly outperform the rejection and baseline models both in

terms of magnitude of adjustment needed to minimize error (Table 4) and

goodness of fit to the experimental data when scaled (Figure 3). This is not

a particularly surprising result, given that the PSO parameter optimization

was performed on swarms using the repair technique, as opposed to the
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rejection technique (see 3.3). It remains to be seen whether the relatively

poor results of the rejection model might match or exceed those of the repair

model were parameters to be optimized for this model specifically. A further

question is that of initial particle positions: while in this paper an initial

position for each particle was assigned randomly, it seems likely that humans

will have prior biases that inform their initial strategies; this may account

for the increased rates of coordination on the ambiguous form observed in

the Rohde et al. human studies.

An important feature to note of the PSO models is the simplicity with

which agents are represented. Particles within the swarm consist solely of

their current position within the search space, their velocity, and a record of

the globally and personally best-found positions. Apart from these, agents

have no form of memory whatsoever. Despite this, referential coordination

and entrainment behaviours which mirror those of human participants are

possible. This presents an account of referential coordination much more in

keeping with more egocentric models of communication (Horton & Keysar,

1996) than the audience design view (Clark & Murphy, 1982), especially given

that agents maintain no explicit model of their communicative partners or of

the common ground. Instead, referential coordination occurs as a response

to previous successes, failures, and incurred production costs, resulting in an

implicit representation or reflection of the common ground via the agents’

mixed strategies.
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5.4 Repair model predictions

In Rohde et al., it was argued that the lower stakes in the researchers’ sec-

ond study8 (by way of more similar and lower form costs) resulted in more

frequent coordination on the ambiguous form by encouraging participants

to explore a variety of referential strategies. This appears to be borne out

in the predictions generated from the repair model for various successful

communication rewards (see Figure 5). As the reward for successful commu-

nication increases (and overall success becomes more guaranteed), simulated

dyads become more likely to coordinate using either the ambiguous form or

unambiguous forms, exceeding the rates of coordination observed in human

trials. Likewise, when success provides less of a reward (or even a penalty),

referential coordination rates drop sharply.

However, seemingly paradoxically, increasing the cost of the ambiguous

form was also predicted by the PSO modeling to increase ambiguous form

coordination rates (see Figure 4). A possible explanation for this observation

is that increasing ambiguous form costs more readily indicate for which of the

three referents the form should be produced, rather than the corresponding

unambiguous form. For example, in experiment 1 the cost of the ambiguous

form (80) is less than the cost both of r2 (120) and r3 (280). Because of this,

agents may differ in their choice of strategies, since using the ambiguous form

for either referent increases score, or indeed may attempt to use the ambigu-

ous form for both referents simultaneously, reducing overall communicative

success. When the cost of the ambiguous form is lowered further, all three

8Experiments 3 and 4.
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unambiguous forms become more costly, confusing the matter further. By

contrast, when ambiguous form cost exceeds the cost of all but one unam-

biguous form, the referential strategy in which the use of this form is replaced

with the use of the ambiguous form becomes highly preferred, as compared

to all other strategies. As the ambiguous form cost approaches that of the

most costly unambiguous form, this effect becomes more pronounced. This

reasoning would not explain why the rate of coordination using the ambigu-

ous form was predicted to remain high after its cost exceeded that of the

costliest of the three unambiguous forms; the simplest answer may be that,

without further training data, the model is invalid for such extrema. Regard-

less, additional human studies would be needed to either verify these results

or provide measurements against which to correct the model.

While the repair model was able to replicate the overinformativity be-

haviour observed in Brennan & Clark without having been trained to do

so, in the human studies conducted by Brennan & Clark this effect was

not observed to be universal, unlike in the PSO predictions. This is not

taken to be problematic, considering no effort was undertaken to establish

how many iterations of the PSO model in the Rohde et al. language games

might correspond to the duration of entrainment in the Brennan & Clark

studies. The replication of the overinformativity behaviour can be directly

attributed to the effect of the inertial scheduling function and, in particular,

the relatively low base inertia value and relatively high inertial dampening

factor value converged on by the meta-optimization task. Specifically, the

optimized values of these parameters resulted in a inertial scheduling func-

tion which dramatically reduced at each iteration the velocity retained from
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the previous iteration, such that after 305 iterations of the PSO algorithm

were run, successfully entrained dyads could not accrue sufficient velocity to

exploit changes in the objective function.

The predictions presented here have covered only a small number of pos-

sible variations on the Rohde et al. language games. It remains to be seen

how larger groups, alternate group topologies (e.g. intersecting groups), var-

ied unambiguous form costs, varied number of referents, and a multitude of

other experimental conditions might affect referential coordination. The fur-

ther use of the PSO model to generate predictions for these conditions has

the potential to highlight areas where further work, either experimental or

theoretical, is needed.

6 Conclusion

This paper sought to model the findings of Rohde et al. computationally,

and to extrapolate beyond the conditions tested in that work. The paper

has demonstrated that PSO offers a framework for replicating the human

responses observed in the Rohde et al. language game studies; in particular,

this paper has identified a constraint handling technique and associated set

of parameters for the PSO algorithm (the “repair” model) which yields a sta-

tistically significant improvement in replicating the experimental data over

an alternative technique (“rejection”) and set of baseline PSO parameters.

The resultant model has then been used to predict the effects of varying costs

and rewards in one of the Rohde et al. language games on dyadic ambigu-

ous form entrainment. Predictions were also made which appeared to be in
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keeping with effects noted in Brennan & Clark. Overall, the findings appear

to demonstrate that it is not unreasonable to explain referential coordina-

tion between interlocutors in terms of a generalized optimization process (in

which communicative success is maximized and communicative costs mini-

mized), without needing to take into account complex or specialized linguistic

processes or reasoning methods.
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