H. Chase Stevens Logo

Evolving Game AI - Part 1 (Overview)

posted on: Thursday, December 27, 2012 by

In this series of posts, I’ll be discussing my experience designing and helping to implement AI opponents for the turn-based, open-source strategy game StratLoc. The AIs were created using a genetic algorithm which was used to crudely simulate natural selection and evolution, allowing our AIs (over the generations) to become competent players of the game. Although the use of genetic algorithms in video games is not uncommon, the technique is often applied when something needs fine-tuning, such as the numeric value of some "aggressiveness" variable, or for the optimization of well-defined subtasks with limited scope, such as situational unit movement patterns or the micromanagement of a base. Our AI, on the other hand, was tasked with providing turn-by-turn, high-level strategies and actions in response to the overall climate of the game, the execution of which was then handled by a hardcoded system.

A game of StratLoc

This first introductory post will give an overview of Stratloc as a game, so as to provide some context. StratLoc is a turn-based strategy game played on a hexagonal board, a la Civilization (sans a great deal of complexity). The objective of the game is to eliminate your opponents by capturing their cities. The game is played on a randomly generated map featuring plains, hills, mountains and water tiles (both of which are impassable), metal tiles, and four starting cities (one for each player). From cities, players can build military units and workers; players must also control at least one city to avoid losing the game. Cities are permanent fixtures which can be captured by opposing players.

The game has a single overt resource, "metal", which can be harvested from metal tiles by building mines. Mines provide a steady stream of metal per turn inversely proportional to the distance of the mine to its owner’s nearest city. Mines, once built, cannot be destroyed, but can switch ownership if captured by another player. The player must also manage "power", which acts as a supply cost for units. Power is provided in small quantities by cities and in bulk by power stations. Power stations are not capturable, but may be destroyed by enemies. A final building, the fortification, can be built in order to provide a defensive bonus and gain vision around a tile. Fortifications are permanent but capturable. All buildings (including cities) must be built using a "worker" unit, which is destroyed in the process.

There are three military units in the game: anti-air, tanks, and air. Anti-air units have a standard range and low base damage, but are cheap and gain a combat advantage against air units. Tanks are slightly more expensive, with a standard base damage but high range. Tanks also suffer a penalty against air. Air units have a high metal cost and high power usage, with a low HP. However, they make up for this by providing huge line of sight and high mobility. In this way, combat strategy is more or less a game of rock-paper-scissors, with air countering tanks, tanks countering anti-air, and anti-air (obviously) countering air. Units can gain a defensive bonus by being located on a city, fortification, or hill, or by accumulating a fortification bonus by remaining in the same spot for several turns.

That concludes the general overview of the game and its rules. In my next post, I’ll discuss the design of the AI from a high-level perspective, then explore the details of the AI genome.